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Abstract. The energy loss of heavy quarks in a quark-gluon plasma of finite size is studied within the
light-cone path integral approach. A simple analytical formulation of the radiative energy loss of heavy
quarks is derived. This provides a convenient way to quantitatively estimate the quark energy loss. Our
results show that if the energy of a heavy quark is much larger than its mass, the radiative energy loss
approaches the radiative energy loss of light quarks.

PACS. 25.75.-q Relativistic heavy-ion collisions – 12.38.Mh Quark-gluon plasma – 14.65.Dw Charmed
quarks

In high-energy heavy-ion collisions hard scattering of
partons occurs in the early stages of the reaction, well
before a quark-gluon plasma (QGP) might have been
formed, producing fast partons that propagate through
the hot and dense medium and lose their energy. Hard
hadronic probes have long been thought to detect the
formation of a quark-gluon plasma in ultrarelativistic
heavy-ion collision. Heavy-quark radiative energy loss is
such a probe to study the properties of the quark-gluon
plasma. In recent years, the investigation of the parton
energy loss in QCD matter has created considerable in-
terest [1–7]. The study of the induced gluon radiation
from heavy quarks in QGP matter is of great impor-
tance for the understanding of experimental data from
high-energy nucleus-nucleus (AA) collisions at the Rela-
tivistic Heavy-Ion Collider (RHIC) and the Large Hadron
Collider (LHC). Recent measurements [8–13] of high-p⊥
hadron production and its centrality dependence in Au-Au
collisions at

√
sNN = 200 GeV provide the first evidence

for medium-induced parton energy loss. The motivation
of this paper is to employ the light-cone path integral
(LCPI) approach to solve the massive-partons radiative
energy loss. The analytical solution is obtained by the
way of light-cone path integral. Our analytical result is
consistent with the former numerical result —the parton
energy loss tends to be smaller for massive quarks than
for massless ones.

In 1953 Landau and Pomeranchuk [14] predicted with
classical electrodynamics that if the formation length of
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the bremsstrahlung becomes comparable to the distance
over which the multiple scattering becomes important, the
bremsstrahlung will be suppressed. Migdal [15] developed
a quantitative theory of this phenomenon. In the current
literature, we call the suppression of radiation processes in
medium the Landau-Pomeranchuk-Migdal (LPM) effect.
First results on the LPM effect in QCD were given by Gyu-
lassy and Wang [16,17]; they first discussed that the par-
ton jet, produced in inelastic collisions, propagating in the
QCD matter will lose its energy due to medium-induced
gluon radiation (G-W model). They pointed out, compar-
ing with elastic energy loss, that the contribution of in-
elastic energy loss is more important. The G-W model has
been extended by R. Baier, Y. Dokshitzer, A.H. Mueller,
S. Peigne and D. Schiff (BDMPS), using equal-time per-
turbation theory. The calculation of BDMPS about the
energy loss of inelastic scattering indicates that the par-
ton radiative energy loss has a square dependence on the
path length in the medium [18]. Based on the G-W model,
M. Gyulassy, P. Levai and I. Vitev (GLV) developed opac-
ity technology to calculate the jet energy loss [19]. E.K.
Wang and X.N. Wang first discussed the detailed balance
effect of the jet energy loss in hot QGP medium [3]. They
pointed out that the modified energy dependence of the
energy loss will affect the suppression shape of moder-
ately high-pt hadrons due to jet quenching in high-energy
heavy-ion collisions. All the above-mentioned approaches
are focused on the massless-parton energy loss. Based on
the non-Abelian Furry approximation, U.A. Wiedemann
obtained a medium-induced gluon distribution [20]. It is
a general result and provides a proof of the equivalence
of the BDMPS and Zakharov formalisms. They extended
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medium-induced gluon distribution to calculate quench-
ing weights [21] and the massive-quark energy loss [6] and
got significative information for jet quenching.

Due to the mass effect, it is hard to solve the prob-
lem of massive-parton emission. Up to now, most re-
sults of the heavy-quark energy loss have been numer-
ical. The light-cone path integral approach is a simple
way of dealing with the bremsstrahlung of photons and
gluons and it can give an analytical result. In the path
integral formalism, the radiation cross-section is deter-
mined by a dipole cross-section which essentially mea-
sures the difference between elastic-scattering amplitudes
of different projectile Fock state components as a func-
tion of impact parameter. Baier, Dokshitzer and Schiff
(BDMS) have shown [22] that the evolution of the rescat-
tering amplitude in the BDMS formalism is determined
by Zakharov’s dipole cross-section [20]. Accordingly, static
Debye screened scattering centers are considered and all
the scattering centers are supposed to be independent.
The probability of gluon emission in the LCPI approach
is expressed through the solution of a two-dimensional
Schrödinger equation with an imaginary potential. The
two-dimensional Hamiltonian reads [23]

H = − 1

2M(x)

(

∂

∂ρ

)2

− in(z)σ3(ρ, x)
2

, (1)

where M(x) = Ex(1 − x), x is the gluon fractional mo-
mentum, n(z) is the number density of the medium at the
longitudinal coordinate z and σ3 is the cross-section of
the interaction of a color singlet qq̄g system with a color
center.

The contribution of the bremsstrahlung mechanism to
the cross-section of gluon production can be written as [7]

dσBH
eff

(x, z)

dx
= Re

∫

dρψ∗(ρ, x)σ3(ρ, x)ψ(ρ, x, z), (2)

where ψ(ρ, x) is the light-cone wave function for the
q → qg transition in vacuum and ψ(ρ, x, z) is the medium-
modified light-cone wave function for the q → qg transi-
tion in medium at the longitudinal coordinate z, ρ is the
transverse coordinate and x is the Feynman variable of
the radiated gluon. The wave functions read [7]

ψ(ρ, x) = p(x)

(

∂

∂ρ′x
− isg

∂

∂ρ′y

)

×
∫

∞

0

dξ exp

(

− iξ

Lf

)

K0(ρ, ξ|ρ′, 0)|ρ′=0, (3)

ψ(ρ, x, z) = p(x)

(

∂

∂ρ′x
− isg

∂

∂ρ′y

)

×
∫ z

0

dξ exp

(

− iξ

Lf

)

K0(ρ, z|ρ′, z − ξ)|ρ′=0,

(4)

where p(x) = i
√

αs/2x [sg(2− x) + 2sqx]/2M(x), sqg de-

notes parton helicities (sq = 1

2
, sg = ±1), K0 is the Green

function for the two-dimensional Hamiltonian. K0 can be
written as:

K0(ρ2, z2|ρ1, z1) =
M(x)

2πi(z2 − z1)
exp

[

iM(x)(ρ2 − ρ1)2
2(z2 − z1)

]

,

(5)
where Lf = 2Ex(1 − x)/ε2,ε2 = m2

g(1 − x) + m2
qx

2, Lf

is the gluon formation length. mq is the quark mass and
mg is the mass of the radiated gluon. The latter plays the
role of an infrared cut-off removing contributions of the
long-wave gluon excitations which cannot be treated per-
turbatively. We assume that the heavy quark is produced
in the central rapidity region at η = 0 and the production
point is at z = 0, propagating through a hard mechanism
in a medium of extent L along the z-axis. The induced
gluon bremsstrahlung spectrum can be represented as

dp

dx
=

∫ L

0

dzn(z)
dσBH

eff
(x, z)

dx
, (6)

where n(z) is the number density of the medium.
Using formulas (3)-(5), it is easy to obtain the light-

cone wave function after a simple calculation:

ψ(ρ, x) =
p(x)M2(x)

2π
(−ρx + isgρy)

×
∫

∞

0

dξ

ξ2
exp

(

− iξ

Lf

)

exp

[

iM(x)ρ2

2ξ

]

, (7)

ψ(ρ, x, z) =
p(x)M2(x)

2π
(−ρx + isgρy)

×
∫ z

0

dξ

ξ2
exp

(

− iξ

Lf

)

exp

[

iM(x)ρ2

2ξ

]

. (8)

Substituting (7) and (8) to (2), the cross-section of gluon
production can be represented as

dσBH
eff

(x, z)

dx
=
p2(x)M3(x)

2π2
Re

∫

dρρεK1(ρε)iσ3(ρ, x)

×
∫ z

0

dξ

ξ2
exp

(

− iξ

Lf

)

exp

[

iM(x)ρ2

2ξ

]

, (9)

with K1(ρε) the modified Bessel function of the second
kind, σ3(ρ, x) is the three-body cross-section of the imag-
inary potential [24], σ3(ρ, x) = CA/2CF [σ2((1 − x)ρ) +
σ2(ρ) − 1

C2

A

σ2(xρ)] = C3(x)ρ
2, where σ2(ρ) is the dipole

cross-section for scattering of a qq pair on a color cen-
ter, C3(x) = C2(ρ)A(x) with A(x) = [1 + (1 − x)2 −
x2/N2

c ]CA/2CF . In the region ρ¿ 1

µ
(here µ is the Debye

screening mass), which dominates the spectrum for strong
suppression, C2(ρ) takes the form [7]

C2(ρ) ≈
CFCTα

2
sπ

2
ln(

1

ρµ
), (10)

where CA, CF , CT are the color Casimir operators.
From (10), we can see that C2(ρ) has a slow logarithmic
dependence on ρ.
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In order to derive a quantitative estimate, we take the
charm quark of mass mq = 1.5 GeV. When ρε is small,
we can expand the Bessel function K1(ρε) and keep the
first two terms. After a complex algebra calculation, one
can obtain the main contribution of the bremsstrahlung
to the cross-section of gluon production:

dσBH
eff

(x, z)

dx
=
α2sCFCTA(x)G(x)

8M(x)

×
{

π

2
Lf sin

z

Lf

+ Lf (1− c)
(

cos
z

Lf

− 1

)

+ Lf ln
M(x)

2µ2z

(

1− cos
z

Lf

)

+
z2

4Lf

}

, (11)

whereG(x) = αsCF [1−x+x2/2]/x and the Euler constant
c ' 0.5772. The radiative energy loss can be written as

∆E =

∫ E

ωcr

dωω
dp

dω
. (12)

Considering light partons, the mass can be neglected,
Lf → ∞, cos ξ

Lf
≈ 1, sin ξ

Lf
≈ 0. From (11) and (12)

we obtain the light-quark radiative energy loss ∆E [7]:

∆E =
CFαs

4

L2µ2

λg
ln

E

ωcr
, (13)

where 1

λg
= α2sπCFCTA(0)n/2µ

2. At E → ∞ the energy

loss (13) is equal to GLV’s result [19]:

∆EGLV =
CFαs

4

L2µ2

λg
ln
E

µ
, (14)

where µ is the Debye screening mass and ωcr ∼
max(nC3L

3/4, Lµ2/2). Formula (14) reflects the loga-
rithm energy dependence of the radiative energy loss.

Now let us discuss the radiative energy loss of a heavy
quark with formula (11). Considering the quark mass ef-
fect, the gluon formation length Lf is a finite quantity.

In formulas (3), (4), (7), (8) and (9), the exp(− iξ
Lf

) is no

longer equal to 1 as in the case of a light parton. The mass
dependence of the gluon distribution (6) comes from the

phase factor exp(− iξ
Lf

), which is analogous to the mass de-

pendence of the gluon distribution which comes from the
phase factor exp[iq(yl−yl)], q = x2m2

q/2ω [3]. In the high-
energy limit, the formation length, Lf , becomes larger
than the quark path length in the QGP, i.e. Lf À L [16].
Using (6), (11) and (12), we can get

∆E =
CFαs

4

L2µ2

λg

{

ln
E

ωcr

+
m2

gL

3πωcr

(

1− ωcr
E

ln
E2

2µ2Lωcr
+ ln

ωcr
2µ2L

)

+
m2

qL

3πE

(

−π
2

6
− ωcr

E
ln

ωcr
2µ2L

+ ln
E

2µ2L

)

}

,

(15)
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Fig. 1. The radiative energy loss of light quarks and heavy
quarks as a function of their energy in a plasma characterized
by µ = 0.5 GeV, λg = 1 fm, mg = 0.375 GeV and L = 4 fm.
The solid line (a) is for light quarks, which were studied by
Zakharov [7]; the dashed line (b) is for heavy quarks studied
by the present authors.
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Fig. 2. The radiative energy loss of light quarks and heavy
quarks as a function of their energy in a plasma characterized
by µ = 0.5 GeV, λg = 1.0 fm, mg = 0.375 GeV and L = 4 fm.
The solid line (a) is for light quarks, which were studied by
Zakharov [7]; the dotted line (b) for a quark of mq = 0.2 GeV;
the dashed line (c) is the energy loss for charm quarks via
eq. (15). It is shown that ∆E is dependent on the quark mass,
the radiative energy loss tends to be smaller for heavy quarks
than for light quarks.

where mg = 0.375 GeV is the mass of the related gluon.
From (15) we can see that the first term is the radiative
energy loss of a light quark. Considering the quark mass
effect, the latter terms are the modifications of the light
quark.

For the sake of seeing the suppression of the heavy-
quark energy loss more clearly, we use fig. 1 and fig. 2
to show the radiative energy loss of light quarks and
heavy quarks in a QGP and the dependence on the mass.
Figure 1 shows the radiative energy loss of light quarks
and heavy quarks. In fig. 1 we can see that the difference
between light quarks and heavy quarks becomes smaller
with increasing energy of the quark. It is obvious that
when the quark energy is much larger than its mass, the
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heavy-quark energy loss is approaching the one of light
quarks. At high energies, our results are consistent with
Gyulassy’s calculations [25]. To illustrate the quark mass
dependence of ∆E, we use fig. 2 to compare the results
for a heavy quark (charm quark mq = 1.5 GeV) to light
quarks with mass mq = 0 and mq = 0.2 GeV. With the
above values of mq, one can see the extent of the ∆E
dependence on the quark mass. Both fig. 1 and fig. 2 show
that the formulas (13), (14) and (15) are applicable in
the high-energy limit. At RHIC (

√
sNN = 200 GeV) and

LHC (
√
sNN = 5.5 TeV) energies, all the above formulas

are operable.
In this work, we assume static Debye screened scatter-

ing centers and that all the centers are independent. The
energy of the parton is supposed to be high enough so
that the condition Lf À L is fulfilled. We use the light-
cone path integral method to deal with the gluon emission
and thus obtain a simple analytical formula for the heavy-
quark radiative energy loss. Equation (15) can be used to
estimate the measurable yield of hadrons containing heavy
quarks. To our knowledge, up to now most of the calcula-
tions of the heavy-quark radiative energy loss have been
carried out by numerical simulations. In the high-energy
limit our results are consistent with Gyulassy’s numeri-
cal calculations [25]. But one should keep in mind that
when the quark mass becomes larger, ρε is no longer a
small quantity and the Bessel function K1(ρε) cannot be
expanded as above. In a following work, we will try to
extend our result to accommodate all quark masses.
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